PCN 14_0066 ### ADG5233/ADG5234 Data Sheet Changes Rev. B to Rev. C This document highlights the performance differences between the Rev.B and Rev.C Transfer for the ADG5233 and ADG5234 Analog Multiplexers. For full product information and changes to Typical Performance Characteristics plots please refer to the ADG5233/34 Rev.C data sheet. #### 1. HBM ESD | HBM ESD | Rev B | Rev C | | |----------------------|-------|-------|--| | I/O Port to Supplies | 4 kV | 8 kV | | | I/O Port to I/O Port | 1 kV | 2 kV | | | All other pins | 4 kV | 8 kV | | ### 2. Datasheet specification changes from Rev. B to Rev. C Tables 1 to 4 outline a datasheet specification comparison of Rev. B to Rev. C material. The changed specifications are highlighted in red font. # SPECIFICATION CHANGES FROM Rev. B to Rev. C **Table 1.** V_{DD} = +15 V \pm 10%, V_{SS} = -15 V \pm 10%, GND = 0 V, unless otherwise noted. | | Rev. B | | | | Rev. C | | | | | | | | |---|-----------|-------------------|----------------------|-----|------------|----------------|-----|----------------------|-----|------------------|--|--| | Parameter | 25°C | −40°C to
+85°C | −40°C to
+125°C | | 25°C | −40°C
+85°C | to | −40°C to
+125°C | | Unit | Test Conditions/
Comments | | | ANALOG SWITCH | | | | | | | | | | | | | | Analog Signal Range | 160 | | V_{DD} to V_{SS} | | 160 | | | V_{DD} to V_{SS} | | V
Ωtyp | $V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$ | | | On Resistance, R _{ON} | | 250 | | 200 | | | 250 | | 200 | | $V_{DD} = +13.5 \text{ V, } V_{SS} =$ | | | • *** | 200 | 250 | | 280 | 200 | | 250 | | 280 | Ω max | −13.5 V | | | On-Resistance Match Between Channels, ΔR _{ON} | 3.5
8 | 9 | | 10 | 3.5
8 | | 9 | | 10 | Ω typ $Ω$ max | $V_s = \pm 10 \text{ V}, I_s = -1 \text{ mA}$ | | | On-Resistance Flatness, R _{FLAT} | 38 | , | | 10 | 38 | | , | | 10 | Ωtyp | $V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$ | | | (ON) | 50 | 65 | | 70 | 50 | | 65 | | 70 | Ω max | | | | LEAKAGE CURRENTS | | | | | | | | | | | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | | Source Off Leakage, ls (Off) | ±0.02 | | | | ±0.02 | | | | | nA typ | $V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}$ | | | 3,,,,,, | ±0.1 | ±0.2 | ±0.4 | | ±0.1 | ±0.2 | | ±0.4 | | nA max | | | | Drain Off Leakage, I _D (Off) | ±0.02 | | | | ±0.02 | | | | | nA typ | $V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V}$ | | | Drain On Leakage, ib (Oil) | ±0.1 | ±0.2 | ±0.4 | | ±0.1 | ±0.2 | | ±0.4 | | nA max | V | | | Channel On Leakage, I _D (On), I _S (| ±0.08 | | | | ±0.08 | | | | | nA typ | $\pm V_S = V_D = \pm 10 \text{ V}$ | | | On) | ±0.2 | ±0.3 | ±0.9 | | ±0.2 | ±0.3 | | ±0.9 | | nA max | | | | DIGITAL INPUTS | | _0.5 | _0.5 | | | | | _0.5 | | THENTIAL | | | | Input High Voltage, V _{INH} | | | | 2 | | | | | 2 | V min | | | | Input Low Voltage, V _{INL} Input Current, I _{INL} or I _{INH} | 0.002 | | | 8.0 | 0.002 | | | | 8.0 | V max
μΑ typ | $V_{IN} = V_{GND}$ or V_{DD} | | | input current, inc or inst | 0.002 | | ±0.1 | | 0.002 | | | ±0.1 | | μA max | VIII — VGIND OI VDD | | | Digital Input Capacitance, C _{IN} | 3 | | | | 3 | | | | | pF typ | | | | Dynamic Characteristics ¹ | 170 | | | | 125 | | | | | ns typ | $R_L = 300 \Omega, C_L = 35 pF$ | | | Transition Time, transition | 210 | 250 | | 280 | 160 | | 190 | | 215 | ns max | $V_S = 10 \text{ V}$ | | | ton (EN) | 175 | | | | 145 | | | | | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$ | | | | 215
80 | 255 | | 290 | 175
125 | | 210 | | 240 | ns max
ns typ | $V_S = 10 \text{ V}$
$R_L = 300 \Omega, C_L = 35 \text{ pF}$ | | | t _{OFF} (EN) | 100 | 115 | | 125 | 155 | | 170 | | 180 | ns max | $V_S = 10 \text{ V}$ | | | Break-Before-Make Time Delay, | 60 | | | | 45 | | | | | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$ | | | to | | | | 30 | | | | | 25 | ns min | $V_{S1} = V_{S2} = 10 \text{ V}$
$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L =$ | | | Charge Injection, Q _{INJ} | -0.6 | | | | 0.4 | | | | | pC typ | 1 nF | | | Off Isolation | -75 | | | | -76 | | | | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$ | | | Channel-to-Channel Crosstalk | -80 | | | | -87 | | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f$
= 1 MHz | | | –3 dB Bandwidth | 205 | | | | 355 | | | | | MHz typ | $R_L = 50 \Omega$, $C_L = 5 pF$ | | | Insertion Loss | -6.3 | | | | -6.4 | | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f$
= 1 MHz | | | C _s (Off) | 4.5 | | | | 2.8 | | | | | pF typ | $V_S = 0 V, f = 1 MHz$ | | | C_D (Off)
C_D (On), C_S (On) | 10
15 | | | | 9
13 | | | | | pF typ
pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | | | 13 | | | | 13 | | | | | рг цур | $V_{DD} = +16.5 \text{ V}, V_{SS} =$ | | | POWER REQUIREMENTS | | | | | | | | | | | –16.5 V | | | lee. | 45 | | | | 45 | | | | | μA typ | Digital inputs = 0 V or VDD | | | I _{DD} | 55 | | | 70 | 55 | | | | 70 | μA max | v ∪∪ | | | l | 0.001 | | | | 0.001 | | | | | μA typ | Digital inputs = 0 V or
V_{DD} | | | I _{SS} | | | | 1 | | | | | 1 | μA max | עטע י | | | V_{DD}/V_{SS} | | | ±9/±22 | | | | | ±9/±22 | | V min/V max | GND = 0 V | | ¹ Guaranteed by design, not subject to production test. **Table 2.** $VDD = +20V \pm 10\%$, $Vss = -20V \pm 10\%$, GND = 0V, unless otherwise noted. | | | Rev.B | | | | Rev | C | | | | |---|------------|-------------------|--------------------------------|------|------------|-------------------|----------------------|------|------------------|---| | Parameter | 25°C | -40°C to
+85°C | −40°C to
+125°C | | 25°C | –40°C to
+85°C | −40°C to
+125°C | | Unit | Test Conditions/
Comments | | ANALOG SWITCH | | | | | | | | | | | | Analog Signal Range | | | $V_{\text{DD}}toV_{\text{SS}}$ | | | | V_{DD} to V_{SS} | | V | | | 0.0 | 140 | | | | 140 | | | | Ωtyp | $V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}$ | | On Resistance, R _{ON} | 160 | 200 | | 230 | 160 | 20 | 0 | 230 | Ω max | $V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$ | | On-Resistance Match Between | 3.5 | | | | 3.5 | | | | Ωtyp | $V_S = \pm 15 \text{ V, } I_S = -1 \text{ mA}$ | | Channels, ΔR _{ON} | 8 | 9 | | 10 | 8 | | 9 | 10 | Ω max | | | On-Resistance Flatness, R _{FLAT} | 33 | | | | 33 | _ | _ | | Ωtyp | $V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}$ | | (ON) | 45 | 55 | | 60 | 45 | 5 | 5 | 60 | Ω max | V -22V/V 22 | | LEAKAGE CURRENTS | | | | | | | | | | $V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$ | | Source Off Leakage, ls (Off) | ±0.02 | | | | ±0.02 | | | | nA typ | $V_S = \pm 15 \text{ V}, V_D = \pm 15 \text{ V}$ | | Source Off Leakage, is (Off) | ±0.1 | ±0.2 | ±0.4 | | ±0.1 | ±0.2 | ±0.4 | | nA max | | | Drain Off Leakage, I _D (Off) | ±0.02 | .0.2 | . 0. 4 | | ±0.02 | . 0. 2 | . 0. 4 | | nA typ | $V_S = \pm 15 \text{ V}, V_D = \pm 15 \text{ V}$ | | 5 | ±0.1 | ±0.2 | ±0.4 | | ±0.1 | ±0.2 | ±0.4 | | nA max | $\pm V_S = V_D = \pm 15 \text{ V}$ | | Channel On Leakage, I _D (On), I _S (| ±0.08 | | | | ±0.08 | | | | nA typ | T 42 - 40 - 712 4 | | On) | ±0.2 | ±0.3 | ±0.9 | | ±0.2 | ±0.3 | ±0.9 | | nA max | | | DIGITAL INPUTS | | | | | | | | | | | | Input High Voltage, V _{INH} | | | | 2 | | | | 2 | V min | | | Input Low Voltage, V _{INL} | 0.002 | | | 0.8 | 0.002 | | | 0.8 | V max | \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | | Input Current, I _{INL} or I _{INH} | 0.002 | | ±0.1 | | 0.002 | | ±0.1 | | μΑ typ
μΑ max | $V_{IN} = V_{GND}$ or V_{DD} | | Digital Input Capacitance, C _{IN} | 3 | | ±0.1 | | 3 | | ±0.1 | | pF typ | | | Dynamic Characteristics ¹ | | | | | | | | | 1 | | | Transition Time, t _{TRANSITION} | 170 | | | | 125 | | | | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$ | | Transition Time, transmon | 200 | 235 | | 260 | 155 | 18 | 0 | 200 | ns max | $V_S = 10 \text{ V}$ | | ton (EN) | 165
200 | 240 | | 265 | 145
170 | 20 | 0 | 220 | ns typ
ns max | $R_L = 300 \Omega, C_L = 35 pF$
$V_S = 10 V$ | | | 80 | 240 | | 203 | 125 | 20 | O | 220 | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$ | | t _{OFF} (EN) | 95 | 105 | | 115 | 155 | 16 | 0 | 170 | ns max | V _S = 10 V | | Break-Before-Make Time Delay, | 50 | | | | 40 | | | | ns typ | $R_L = 300 \Omega, C_L = 35 pF$ | | t_D | | | | 30 | | | | 20 | ns min | $V_{S1} = V_{S2} = 10 \text{ V}$ | | Charge Injection, Q _{INJ} | 0 | | | | 0.7 | | | | pC typ | $V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}$ | | Officiation | 75 | | | | 76 | | | | dD to on | $R_L = 50 \Omega, C_L = 5 pF, f$ | | Off Isolation | -75 | | | | -76 | | | | dB typ | = 1 MHz | | Channel-to-Channel Crosstalk | -80 | | | | -87 | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f$
= 1 MHz | | -3 dB Bandwidth | 210 | | | | 370 | | | | MHz typ | $R_L = 50 \Omega$, $C_L = 5 pF$ | | Insertion Loss | -5.5 | | | | -5.6 | | | | dB typ | $R_L = 50 \Omega, C_L = 5 pF, f$ | | C _s (Off) | 4.5 | | | | 2.8 | | | | pF typ | = 1 MHz
V _S = 0 V, f = 1 MHz | | C _D (Off) | 10 | | | | 9 | | | | pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | C_D (On), C_S (On) | 15 | | | | 13 | | | | pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | POWER REQUIREMENTS | | | | | | | | | | $V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$ | | | 50 | | | | 50 | | | | μA typ | Digital inputs = 0 V or | | IDD | 70 | | | 110 | 70 | | | 110 | μA max | V_{DD} | | | | | | . 10 | | | | . 10 | ' | Digital inputs = 0 V or | | Iss | 0.001 | | | | 0.001 | | | | μA typ | V _{DD} | | V 0/ | | | .0/.22 | 1 | | | .0/.22 | 1 | μA max | CND OV | | V_{DD}/V_{SS} | <u> </u> | | ±9/±22 | | <u> </u> | | ±9/±22 | | V min/V max | GND = 0 V | ¹ Guaranteed by design, not subject to production test. **Table 3.** $V_{DD} = +12V \pm 10\%$, $V_{SS} = 0V$ GND = 0 V, unless otherwise noted. | | Rev.B | | | | Rev. | С | | | | | |--|---------------|-------------------|------------------------|------------|---------------|-------------------|-------------------|----------|--|---| | Parameter | 25°C | –40°C to
+85°C | −40°C to
+125°C | | 25°C | −40°C to
+85°C | −40°C t
+125°C | | Unit | Test Conditions/
Comments | | ANALOG SWITCH Analog Signal Range | | | 0 V to V _{DD} | • | | | 0 V to V | OD . | V | | | On Resistance, R _{ON} | 360 | | | | 360 | | | | Ωtyp | $V_S = 0 V \text{ to } 10V, I_S = -1 \text{ mA}$ | | Off nesistatice, non | 500 | 610 | | 700 | 500 | 610 | | 700 | Ω max | $V_{DD} = +10.8V, V_{SS} = 0$ | | On-Resistance Match Between | 5.5 | | | | 5.5 | | | | Ωtyp | $V_S = 0 V \text{ to } 10V, I_S = -1 \text{ mA}$ | | Channels, ΔR _{ON} | 20 | 21 | | 22 | 20 | 21 | | 22 | Ω max | | | On-Resistance Flatness, R _{FLAT} | 170 | 225 | | 270 | 170 | 225 | | 270 | Ωtyp | $V_s = 0 V$ to 10V, $I_s = -1 \text{ mA}$ | | | 280 | 335 | | 370 | 280 | 335 | | 370 | Ω max | $V_{DD} = 13.2 \text{ V}, V_{SS} =$ | | LEAKAGE CURRENTS | | | | | | | | | | 0V | | Source Off Leakage, ls (Off) | ±0.02 | | | | ±0.02 | | | | nA typ | $V_s = 1V/10V, V_D = +10 V/1V$ | | 3, | ±0.1 | ±0.2 | ±0.4 | | ±0.1 | ±0.2 | ±0.4 | | nA max | | | Drain Off Leakage, I _D (Off) | ±0.02 | | | | ±0.02 | | | | nA typ | $V_s = 1V/10V, V_D = +10 V/1V$ | | Drain on Leanage, is (on) | ±0.1 | ±0.2 | ±0.4 | | ±0.1 | ±0.2 | ±0.4 | | nA max | 110 47 14 | | Channel On Leakage, I_D (On), I_S (| ±0.08 | | | | ±0.08 | | | | nA typ | $\pm V_S = V_D = 1 \text{ V}/10 \text{V}$ | | On) | ±0.2 | ±0.3 | ±0.9 | | ±0.2 | ±0.3 | ±0.9 | | nA max | ± V 3 = V D = 1 V /10 V | | DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current, I _{INL} or I _{INH} Digital Input Capacitance, C _{IN} | 0.002 | | ±0.1 | 2
0.8 | 0.002 | | ±0.1 | 2
0.8 | V min
V max
μA typ
μA max
pF typ | $V_{IN} = V_{GND} \text{ or } V_{DD}$ | | DYNAMIC CHARACTERISTICS ¹ | | | | | | | | | рг тур | | | | 235 | | | | 165 | | | | ns typ | $R_L = 300 \Omega, C_L = 35$ | | Transition Time, trransition | 295 | 365 | | 410 | 215 | 260 | | 300 | ns max | pF
V _S = 8 V | | | 240 | | | | 200 | | | | ns typ | $R_L = 300 \Omega, C_L = 35$ | | ton (EN) | 305 | 380 | | 430 | 245 | 305 | | 350 | ns max | pF
V _S = 8 V | | | 70 | 300 | | .50 | 130 | 303 | | 330 | ns typ | $R_L = 300 \Omega, C_L = 35$ | | t _{OFF} (EN) | 90 | 105 | | 115 | 165 | 180 | | 200 | ns max | pF
V _S = 8 V | | Break-Before-Make Time Delay, | 125 | 103 | | 113 | 85 | 100 | | 200 | ns typ | $R_L = 300 \Omega, C_L = 35$ | | t _D | 123 | | | 65 | 03 | | | 45 | ns min | pF
$V_{S1} = V_{S2} = 8 \text{ V}$ | | Charge Injection, Q _{INJ} | 0 | | | 05 | 0 | | | 73 | pC typ | $V_S = 6 \text{ V}, R_S = 0 \Omega, C_L$ | | Off Isolation | -75 | | | | -76 | | | | dB typ | = 1 nF
$R_L = 50 \Omega$, $C_L = 5 pF$, | | Channel-to-Channel Crosstalk | -80 | | | | -87 | | | | dB typ | f = 1 MHz
$R_L = 50 \Omega, C_L = 5 \text{ pF},$ | | –3 dB Bandwidth | 172 | | | | 260 | | | | MHz typ | f = 1 MHz
$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$ | | Insertion Loss | -8.7 | | | | -9 | | | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, | | C_s (Off) C_D (Off) C_D (On), C_s (On) | 5
11
16 | | | | 3
10
14 | | | | pF typ
pF typ
pF typ | f = 1 MHz
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | POWER REQUIREMENTS | | | | | | | | | | V _{DD} = 13.2 | | I _{DD} | 40
50 | | | 6 5 | 40 | | | 65 | μA typ | Digital inputs = 0 V
or V_{DD} | | VDD . Guaranteed by design not subject | 50 | | 9/40 | 65 | 50 | | 9/40 | 65 | μA max
V min/V max | GND = 0 V, Vss=0V | $_{\mbox{\scriptsize 1}}\,\mbox{\scriptsize Guaranteed}$ by design, not subject to production test. **Table 4.** V_{DD} = +36V ± 10%, V_{SS} = 0V GND = 0 V, unless otherwise noted. | | Rev.B | | | | Rev. C | | | | |--|------------|-------------------|------------------------|----------|-------------------|------------------------|------------------|---| | Parameter | 25°C | −40°C to
+85°C | –40°C to
+125°C | 25°C | –40°C to
+85°C | –40°C to
+125°C | Unit | Test Conditions/
Comments | | ANALOG SWITCH | | | 0.1/+1/ | | | 0.77+-77 | V | | | Analog Signal Range | 140 | | 0 V to V _{DD} | 1.40 | | 0 V to V _{DD} | , | $V_S = \pm 10 \text{ V, } I_S = -1$ | | On Resistance, Ron | 140 | | | 140 | | | Ωtyp | mA | | · | 170 | 215 | 245 | 170 | 215 | 245 | Ω max | $V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$ | | On-Resistance Match Between | 3.5 | | | 3.5 | | | Ωtyp | $V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$ | | Channels, ΔR _{ON} | 8 | 9 | 10 | 8 | 9 | 10 | Ω max | IIIA | | On-Resistance Flatness, R _{FLAT} | 35 | | | 35 | | | Ωtyp | $V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$ | | (ON) | 50 | 60 | 65 | 50 | 60 | 65 | Ω max | IIIA | | LEAKAGE CURRENTS | | | | | | | | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | | ±0.02 | | | ±0.02 | | | nA typ | $V_S = \pm 10 \text{ V}, V_D =$ | | Source Off Leakage, ls (Off) | ±0.02 | ±0.2 | ±0.4 | ±0.02 | ±0.2 | ±0,4 | nA max | ±10 V | | | ±0.02 | ±0.2 | ±0.4 | ±0.02 | ±0.2 | ±0.4 | nA typ | $V_S = \pm 10 \text{ V}, V_D =$ | | Drain Off Leakage, l₀ (Off) | ±0.02 | ±0.2 | ±0.4 | ±0.02 | ±0.2 | ±0,4 | nA max | ±10 V | | Channel On Leakage, I _D (On), I _S (| ±0.08 | | | ±0.08 | | | nA typ | $\pm V_S = V_D = \pm 10 \text{ V}$ | | On) DIGITAL INPUTS | ±0.2 | ±0.3 | ±0.9 | ±0.2 | ±0.3 | ±0.9 | nA max | | | Input High Voltage, V _{INH} | | | 2 | | | 2 | V min | | | Input Low Voltage, V _{INL}
Input Current, I _{INL} or I _{INH} | 0.002 | | 0.8 | 0.002 | | 0.8 | V max
μA typ | $V_{IN} = V_{GND}$ or V_{DD} | | | | | ±0.1 | | | ±0.1 | μA max | VIN — VGND OI VDD | | Digital Input Capacitance, C _{IN} Dynamic Characteristics ¹ | 3 | | | 3 | | | pF typ | | | • | 205 | | | 155 | | | ns typ | $R_L = 300 \Omega, C_L = 35$ | | Transition Time, t _{TRANSITION} | 255 | 275 | 290 | 200 | 215 | 230 | ns max | pF
V _S = 10 V | | | 200 | 2/3 | 270 | 180 | 213 | 250 | ns typ | $R_L = 300 \Omega$, $C_L = 35$ | | t _{on} (EN) | 240 | 265 | 290 | 215 | 235 | 250 | ns max | pF
V _S = 10 V | | | 85 | 203 | 270 | 150 | 255 | 250 | ns typ | $R_L = 300 \Omega$, $C_L = 35$ | | t _{OFF} (EN) | 115 | 115 | 115 | 190 | 190 | 190 | ns max | pF
V _S = 10 V | | Break-Before-Make Time Delay, | 65 | 113 | 113 | 50 | 150 | 150 | ns typ | $R_L = 300 \Omega$, $C_L = 35$ | | t _D | 03 | | 35 | 30 | | 25 | ns min | pF
$V_{S1} = V_{S2} = 10 \text{ V}$ | | Charge Injection, Q _{INJ} | -0.6 | | 33 | 0.5 | | 23 | pC typ | $V_S = 0 V$, $R_S = 0 \Omega$, C_L | | Off Isolation | -75 | | | -76 | | | dB typ | = 1 nF
$R_L = 50 \Omega, C_L = 5 pF,$ | | | | | | | | | , , | f = 1 MHz
$R_L = 50 \Omega, C_L = 5 \text{ pF},$ | | Channel-to-Channel Crosstalk | -80
100 | | | -87 | | | dB typ | f = 1 MHz | | –3 dB Bandwidth | 190 | | | 275 | | | MHz typ | $R_L = 50 \Omega, C_L = 5 pF$
$R_L = 50 \Omega, C_L = 5 pF,$ | | Insertion Loss | -5.9 | | | -6.2 | | | dB typ | f = 1 MHz | | C_S (Off) C_D (Off) | 4.5
10 | | | 2.8
9 | | | pF typ
pF typ | $V_S = 0 V, f = 1 MHz$
$V_S = 0 V, f = 1 MHz$ | | C_D (On), C_S (On) | 15 | | | 13 | | | pF typ | $V_S = 0 \text{ V, } f = 1 \text{ MHz}$ | | POWER REQUIREMENTS | | | | | | | | V _{DD} = +16.5 V, V _{SS} =
-16.5 V | | lop | 80 | | | 80 | | | μA typ | Digital inputs = 0 V
or V_{DD} | | | 100 | | 130 | 100 | | 130 | μA max | | | VDD . Guaranteed by design not subject | | | Sep-40 | | | Sep-40 | V min/V max | GND = 0 V, Vss=0V | $_{\mbox{\scriptsize 1}}$ Guaranteed by design, not subject to production test.